
Clepsydra: Modeling Timing Flows in Hardware Designs
Armaiti Ardeshiricham, Wei Hu and Ryan Kastner

Department of Computer Science and Engineering
University of California, San Diego
{aardeshi, weh040, kastner}@ucsd.edu

Abstract—Emergence of side channel security attacks has challenged
the classic assumptions regarding what data is publicly available. As
demonstrated repeatedly, statistical analysis of information collected by
measuring completion time of hardware designs can reveal confidential
information. Even though timing-based side channel leakage can be easily
exploited to breach data privacy, conventional hardware verification
tools are not yet suited to assess these vulnerabilities. To acquaint the
hardware design process with formal security evaluations, we introduce
a model for tracking timing-based information flows through HDL
codes. Based on this model, we have developed Clepsydra, a tool for
automatically generating circuitry for tracking timing flows and generic
logical flows within hardware designs in two distinct channels. The circuit
generated by Clepsydra can be analyzed by EDA tools to detect timing
leakage or formally prove constant execution time. We present proofs
regarding soundness and precision of the proposed model along with
results of employing Clepsydra to verify security properties on a variety
of hardware units including crypto cores, bus architectures, caches and
arithmetic modules.

I. INTRODUCTION

Variations in the time taken by a computational unit to generate
results form a leakage channel that carries information regarding
the data being processed. Many implementations of cryptographic
algorithms are shown to have a varying runtime based on the Boolean
value of secret key. Thus, an attacker familiar with the underlying
algorithm can leverage statistical methods to extract the key from
timing measurements [1], [2]. In security critical applications, timing
based attacks have targeted various hardware units such as caches [3],
[4], shared buses [5], [6] and floating point arithmetic units [7],
[8]. Being both inexpensive and pervasive, timing-based side channel
attacks are attracting more attention. They can be launched at low cost
since the attacker merely needs to measure the execution time of the
victim process without physical access to the design. Moreover, any
application encompassing data-dependent optimizations is susceptible
to such attacks.

Most methods to protect against hardware based timing leakage
rely on manual inspection of the HDL code, e.g., looking for sources
of timing variation such as branches conditioned on secret values
or data-dependent requests sent to shared resources. This can be a
lengthy and cumbersome task, and it provides no formal guarantee
regarding the design’s security. Furthermore, such analysis only
inspects the design with respect to already-known attack vectors and
falls short in providing resilience against all possible timing based
threats. Exhaustively testing the design to capture timing variations
is also becoming impractical due to scale of modern chips. As the
complexity and prevalence of hardware designs grow, so does the
need for automatic and formal analysis of security properties. Over
the past decade, multiple research solutions have been proposed for
incorporating security analysis into traditional hardware verification
tools. Many of the proposed techniques [9], [10], [11], [12] enable
the designers to verify security properties regarding confidentiality,
integrity, and non-interference based on the notion of information
flow tracking (IFT).

By modeling how labeled data moves through a system, IFT tools
indicate if sensitive information flows to any part of the design.
However, this indication is limited to a binary decision as the nature
of detected flows are not specified. More specifically, IFT techniques
cannot segregate functional flows from timing based ones. This could
be problematic in many security applications where functional flow is
expected as it is protected by encryption, while timing flows shall be
eliminated. For example, in a crypto core, functional flow from the
key to the ciphertext is expected while the designer needs to ensure
that the time taken for the ciphertext to become available does not
depend on the value of the secret key. Furthermore, it might be the
case that the output is not directly accessible by untrusted parties
but its timing footprint is public. For instance, completion time of a
shared floating point arithmetic unit can reveal information regarding
its input values, even if the output itself is hidden. Thus, to assess
the security of the design with respect to side channel attacks, timing
flows should be distinguishable from functional ones.

In this work, we show how timing flows can be precisely modeled,
and introduce an IFT technique for capturing timing leakage of
hardware designs. Our model is based on detecting and propagating
sources of potential timing variations in the code by inspecting
interfaces of design’s registers. We introduce Clepsydra, which au-
tomatically generates the logic required for tracking timing flows
and logical flows in arbitrary HDL codes. The logic generated by
Clepsydra can be processed by conventional EDA tools in order
to analyze timing properties of the design under test. As this logic
is generated after statically analyzing all the execution paths in the
design, it does not rely on activating the worst case execution path
of the design in order to expose timing variation during verification.

Clepsydra is easily adoptable in the hardware design flow. It
does not employ any additional HDL language features. And while
it generates synthesizable logic that could be used for runtime
detection, we envision its usage primarily during design time, when
the Clepsydra logic is analyzed by EDA tools to verify the existence
(or lack thereof) of timing-based properties. The Clepsydra logic is
only used for analysis and is discarded before manufacturing, thus
it imposes no additional runtime overhead. We show how to use
Clepsydra to detect timing leakage in various existing architectures,
or prove that they have constant execution time. More specifically,
this paper provides the following contributions:

• Modeling timing-based information flows in hardware designs;
• Developing Clepsydra for automatic generation of digital logic

for testing timing behaviour of hardware designs;
• Analyzing timing-based security properties of various hardware

architectures using Clepsydra.

The rest of this paper is organized as follows. Section II summarizes
how IFT-based methods are employed for hardware security analysis,
and how we aim to improve them. Our proposed model for tracking
timing flows is introduced in Sections III. In Section IV we elaborate
implementation of Clepsydra, and present the experimental results

gathered from using Clepsydra to analyze security properties of
various architectures in Section V. We provide a brief summary of
related work in Section VI, and conclude the work in Section VII.

II. BACKGROUND & MOTIVATION

In this section we elaborate how IFT-based techniques enable
security analysis, and argue why current tools are inadequate for
establishing formal guarantees of timing based properties. We further
point out how employing a more meticulous model for segregating
different forms of logical flows can resolve this issue.

A. Security Properties

Isolation of different logical components is a primary security
property that hardware designers seek to provide. Two major security
properties can be enforced through isolation:

• Confidentiality: Preventing untrusted parties from observing
secret information by isolating the units which process secret
data. For example, in a cryptographic hardware we want to
ensure that the secret key does not leak to public outputs as a
result of design flaws, hardware Trojans or side channel leakage.

• Integrity: Preventing unauthorized parties from modifying sen-
sitive information. For instance, the registers storing crypto-
graphic keys should only be accessible by trusted sources.

In order to provide sound security guarantees, information flow must
be analyzed through both data channels (also known as functional
channels) and timing channels. The former ensures that data does not
move among isolated components, while the latter certifies that the
timing footprints of the isolated entities do not form a communication
channel.

B. IFT & Hardware Security Verification

IFT techniques provide a systematic approach for verifying security
properties related to integrity and confidentiality. This works by
assigning security labels to different signals and tracking how these
labels propagate through the system. Different security properties can
be tested by defining the input labels and inspecting the output labels.
Precision of an IFT technique, i.e. how closely the reported flows
resemble the actual flows, is directly affected by the label propagation
rules.

If the label propagation rules are not comprehensive enough to
capture all forms of digital flows, the design might be inaccurately
marked as secure. Information can flow in both explicit and implicit
ways. In the explicit form, information flows to the output of an
operation which is processing sensitive data. More subtly, data that
controls conditional statements can implicitly affects the results. For
instance, in the code if(c) then x = y + z; signal x is
explicitly affected by signals y and z, and implicitly by signal c.
For an IFT technique to be sound and free from false negatives, it
should be capable of tracking both implicit and explicit flows.

Furthermore, label propagation rules should detect cases where
flow of information is blocked. For example, if certain bits of the
secret data is ANDed with zero, there will be no flow from those
bits to the output of the AND gate. However, a conservative tracking
rule, which assigns the highest security labels of the inputs to the
output, marks all the output bits as sensitive. In contrast, a precise
IFT tool, built upon stricter rules which take into account Boolean
values of the operands and the operation functionality, can recognize
absence of flows and avoid certain false positives [13].

C. Isolating Timing Flows

Existing IFT techniques track both functional flows and timing
flows using the same set of labels and propagation rules. Thus,
when a flow is detected, whether it is a functional flow or a
timing flow, remains unknown. However, different applications ne-
cessitate different forms of isolation. For instance, both timing and
functional isolation should be guaranteed when a cache is shared
among mutually untrusting processes. But secure implementation of a
cryptographic algorithm only requires elimination of timing channels
as functional flows are protected by encryption. This property cannot
be tested using IFT techniques which capture all forms of logical
flows through a single set of labels. As the cipher is always affected
by the secret key through functional flows, its security label will be
raised to the security label of the key, independent of existence of
timing flows. This significantly limits employment of IFT techniques
for security analysis as similar scenarios happen in many applications
where functional flows are inevitable but timing based flows should
be eliminated.

Since conventional IFT techniques are designed for tracking all
forms of logical flows, employing them to detect only timing flows
results in a considerable number of false positives. As timing flows
are a subset of information flows; a set of stricter propagation rules
can be designed that work on a separate set of labels and track only
timing flows while ignoring functional ones. In the next section we
introduce a set of rules for detecting only timing flows and tracking
them through the system.

III. MODELING TIMING FLOWS

Timing flows exist from inputs to outputs of a circuit if the time that
is taken for the outputs to become available depends on the Boolean
values of the inputs. These flows can be exploited if the input signals
causing them contain secret information, and the completion time of
the unit can be measured by an untrusted party. For instance, consider
a division unit, as shown in Fig 1, implemented via consecutive
subtraction of the divisor from the dividend. The execution time
of this algorithm depends on the input values as the number of
subtractions is not fixed. This indicates that even if the Boolean
value of the quotient is undisclosed, evaluating the execution time
reveals information regarding the inputs. In this section we discuss
how timing variations are represented in digital circuits, and develop
a formal model for capturing them.

A. Characterizing Timing Flows

Completion time of a design is defined by the time when its output
is updated to its final value. If no timing flow exists from input X
to output Y, the time taken for Y to reach its final value should be
constant as X changes. Thus, in order to detect timing flows, we need
to determine whether or not the updates made to the outputs occur
at constant timesteps. This can be addressed by detecting variations
in the update time of all design variables, and tracking them to the
final outputs. We discuss how this can be done for any arbitrary
digital circuit by answering three questions: How are timing flows
generated from a set of sensitive inputs? How does the flow propagate
once generated? And lastly, what are the necessary conditions for
blocking the flow of timing information and enforcing constant time
execution? Since we are interested in detecting timing variations in
terms of clock cycles, we need to analyze the design’s registers and
the signals which control them.

Generation of Timing Variation: Design’s registers are written
to by a set of data signals which are multiplexed by controllers at
each cycle. Considering a register where none of its data or control

Module div (a, b, clk, go, q);
input [31:0] a, b;
input clk, go;
output [31:0] q;
reg [9:0] counter;
always @(posedge clk)
 if (done & go) // reset…
 else if(!done)
 Decrease counter
 Shift the divisor
 if (dividend >= divisor)
 Update temp_quotient
 Subtract divisor from dividend

 if(counter==0)
 Write temp_quotient to out
 Set done

 // counter implementation

Fig. 1. Division algorithm based consecutive subtraction. The red box shows
generation of timing variations, and the green box depicts their blockage.

signals has timing variation but might contain sensitive data, we want
to figure out the circumstances under which timing variations occur at
the register’s output. If the register is definitely updated at each clock
cycle, there will be no timing variations. However, if occurrence of
updates are tentative, i.e. there is a degree of freedom for the register
to hold its current value or get a new value, timing variation could
occur. If the controller signal which is deciding the occurrence of
the update is sensitive, the resulting timing variation will contain
sensitive information as well.

Going back to the division example in Fig 1, the updates made to
the register temp_quotient are conditioned on the input. Thus,
based on the Boolean values of the input signals, this register might
get its final value at different times. In Theorems 1 and 2, we show
that detecting conditional updates caused by sensitive data soundly
captures all timing flows while discarding functional-only ones.

Propagation and Blockage of Timing Variation: If any of the
data or control signals of a register has cycle level variations, the
variation can flow through the register. While simply propagating
these flows soundly exposes all timing variations, it overestimates
the flow when mitigation techniques are implemented to eliminate
the variations. In other words, we need to be able to detect situations
where timing variations are not observable at a register’s output even
though they are present at its input.

In division example in Fig 1, instead of directly writing the
temp_quotient to the output, a wait period is taken before
updating the output value. If the wait period is longer than the worst
case execution time, the output gets its update at constant time steps.
We will show in Theorem 3 that if there exists a non-sensitive control
signal which fully controls the occurrence of updates to a register, it
can block flow of timing variation from input to output of the register.
Fully controlling control signal implies that the register gets a new
value if and only if the controller gets a new value. Thus, the timing
signature of the register output is identical to the control signal (with a
single cycle delay), and is independent of its input. Implementing this
policy reduces the number of false positives to some extent without
imposing any false negative. In the division example, if the counter is
large enough, the output value changes immediately after the done
condition is updated, and keeps its old value while done does not
change. Hence, all the variations to the final output are controlled by
the done signal which is non-sensitive, indicating constant execution

time with respect to inputs.

B. Theorems & Proofs

In the rest of this section we formally define IFT concepts and
prove the claims we made earlier. We show that our model soundly
discovers all potential timing channels by proving that detecting
tentative updates of design’s registers is adequate for exposing all
timing variations, and the presence of non-sensitive fully controlling
signals eliminates existing timing variations. We also prove that our
model ignores functional-only flows and thus is more precise for
analyzing timing-based properties compared to IFT techniques which
capture all logical flows.

Definition 1. An event e over data set Y and time values T is shown
as the tuple e = (y, t) for y ∈ Y and t ∈ T , where y and t can be
retrieved by functions val(e) and time(e). If y is an n−dimensional
vector, and t the number of clock ticks that has past, the inputs or
outputs of a design with n ports can be represented by event e.

Definition 2. Trace A(Y, n) represents n events {ei}ni=1 over data
set Y , which are ordered by time: time(ei) = time(ei+1) + 1.

Definition 3. For any trace A(Y, n), its distinct trace d(A) is defined
as the the longest sub-trace of A, where consecutive events have
different values, and for any two consecutive events in A such that
val(ei) 6= val(ei−1), ei is in d(A).

For example, for trace A = {(10, 1), (10, 2), (20, 3), (20, 4)},
its distinct trace is d(A) = {(10, 1), (20, 3)} since the values only
change at clock cycle 1 and 3.

Definition 4. Traces A(X, k) and A′(X, k) are value preserving
with respect to set I if the only difference between their correspond-
ing events ei and e′i is in the j-th element of the value vector such
that j ∈ I .

In IFT analysis, we are interested in the effects of a set of sensitive
variables by testing the design with respect to input traces which only
differ in the sensitive inputs. This idea can be modeled by using value
preserving traces where I is the set of sensitive inputs.

Definition 5. Output of an FSM F is completely controlled by input
J if the FSM output is updated if and only if input J is updated.

Definition 6. For any set of wires W , sensitivity label set Ws and
timing label set Wt indicate if W carries sensitive information or
timing variation, respectively.

Definition 7. In a sequential circuit represented by the FSM F =
(X, Y, S, s0, δ, α), a functional-only flow from a set of sensitive
inputs I exists if there exist two value preserving (with respect to
I) input traces A(X, k) and A′(X, k) such that when fed to the
FSM, the timesteps of the distinct traces of the outputs are equivalent,
while the values of corresponding events varies. Stated formally: if
B = α(A, s0) and B′ = α(A′, s0), then:

∀ei, e′i ∈ d(B), d(B′) time(ei) = time(e′i) and

∃ej , e′j ∈ d(B),∈ d(B′) such that val(ej) 6= val(e′j)

Definition 8. In a sequential circuit represented by the FSM F =
(X, Y, S, s0, δ, α) a timing flow from a set of sensitive inputs
I exists if there exist two value preserving (with respect to I) input
traces A(X, k) and A′(X, k) such that when fed to the FSM, the
timestep of the distinct traces of the outputs are not equivalent. Stated
formally, if B = α(A, s0) and B′ = α(A′, s0), then:

∃ej , e′j ∈ d(B),∈ d(B′) such that time(ej) 6= time(e′j)

Definition 9. For a combinational logic function f : X → Y its
flow tracking function fs : X × Xs → Ys determines whether or
not sensitive inputs affect the outputs. If f(x1, ..., xn) = (y1, ..., ym)
then fs(x1, ..., xn, x1s , ..., xns) = (y1s , ..., yms), where if set of
sensitive inputs {xj |xjs = 1} can affect value of yi then yis = 1
indicating information flow exists from the sensitive inputs to output
yi.

Definition 10. For a sequential logic function f : X × S →
Y , where X, S, Y are the inputs, states, and the outputs, the
time tracking function ft : X × Xs × Xt × S × Ss ×
St → Yt determines if a set of inputs tainted with sensitive
information or timing variation can affect timing variations of the
output. If f(x1, x2, ..., xn, s1, s2, ..., sl) = (y1, y2, ..., ym) then
ft (x1, ..., xn, x1s , ..., xns , x1t , ..., xnt , s1, ..., sl, s1s , ...,
sls , s1t , ..., slt) = (y1t , ..., ymt), where if a set of tainted inputs
{xj |xjs ∨ xjt = 1} can affect whether or not state si is updated
then sit = 1 and we say timing flow exists from the tainted inputs
to output si.

Theorem 1. The time tracking logic Ft of FSM F captures timing
flows of the FSM.

Proof. To prove this theorem we show that the existence of a timing
flow reduces to variations in occurrence of updates to the output, and
therefore is captured by Ft.

If a timing flow exists with respect to the set of tainted in-
puts I , based on Definition 8 there exist value preserving traces
A(X, k), A′(X, k) such that :

if B = α(A), d(B) = (e1, e2, ..., em)

and B′ = α(A′), d(B′) = (e′1, e
′
2, ..., e

′
m) then :

∃j ∈ [1 : m] such that time(ej) 6= time(e′j)

Consider n to be the smallest index such that time(en) 6= time(e′n).
Without loss of generality we can assume that time(en) = tn and
time(e′n) = tn + d, d > 0 . Basically, we are assuming n to be the
time when the new value of trace B′ appears with delay d compared
to trace B. We can write the elements of these two traces up to the
nth element:

d(B) = (v1, t1), (v2, t2), ..., (vn−1, tn−1), (vn, tn)

d(B′) = (v′1, t1), (v′2, t2), ..., (v′n−1, tn−1), (v′n, tn + d)

∀i ∈ [2 : n] : vi 6= vi−1and v
′
i 6= v′i−1 Based on Definition3.

The following observations can be made based on the above traces:

(a) : (vn, tn) and (vn−1, tn − 1) ∈ B

(b) : (v′n−1, tn) and (v′n−1, tn − 1) ∈ B′

From (a) we can infer that value of trace B is updated at time tn
from vn−1 to vn while equation (b) shows that value of trace B′ is
not updated at time tn and is equal to v′n−1

By Definition 4, all input events remain the same ∀i /∈ I , meaning
that the only difference between them is the sensitive inputs. Thus,
the difference in the update to the output is caused by the set of
sensitive inputs and is captured by Ft based on Definition 10.

Theorem 2. The time tracking logic Ft of FSM F does not capture
functional-only flows of the FSM.

Proof. We prove this theorem by showing that the existence of
functional only flows will not impose any variations on the occurrence
of updates to the output, and thus will not be captured by Ft.

If a functional-only flow exists with respect to the set of sensitive
inputs I , then based on Definition 7 there exists value preserving
traces A(X, k), A′(X, k) such that:

if B = α(A), d(B) = (e1, e2, ..., em) and

B′ = α(A′), d(B′) = (e′1, e
′
2, ..., e

′
m) then :

(1) ∀i ∈ [1 : m] : time(ei) = time(e′i)

(2) ∃j ∈ [1 : m] : such that val(ej) 6= val(e′j)

We claim that there is no time tn such that the value of one of the
traces is updated while the other one is not. Without loss of generality,
we show that there is no time tn where the value of B is updated
but the value of B′ remains the same. We prove this via proof by
contradiction.

Contradiction hypothesis: At time tn, trace B is updated while
trace B′ holds its value.

Let vn and vn−1 be the values of trace B at times tn and tn − 1
respectively. Based on the contradiction hypothesis, (vn, tn) is an
event in B. Hence, d(B) contains an event ei such that time(ei) =
tn. Let us assume that ei is the ith element of d(B). Similarly, assume
values of trace B′ in times tn and tn − 1 are v′n and v′n−1. Based
on the contradiction hypothesis we know (v′n, tn) is not an event in
d(B) since B is not updated at this time. Thus, d(B′) does not have
any event e′j which timestep is tn. Hence, if we pick the ith element
of d(B′), called e′i, then time(e′i) 6= tn. So:

∃i in[1 : m] such that time(ei) 6= time(e′i)

This is contradictory to the definition of functional-only flows since
there could be no time tn where the values of one of the traces is
updated while the other one is not. Based on Definition 10 this is not
captured by FSMt.

Theorem 3. If FSM F is completely controlled by input J such that
J /∈ I , then no timing variation is observable at the output of FSM
F as a result of processing traces which are value preserving with
respect to set I .

Proof. We will prove this theorem via proof by contradiction.
Contradiction hypothesis: there exist value preserving (with respect

to I) traces A(X, k) and A′(X, k) which impose timing flow at the
output of FSM F which is completely controlled by input J /∈ I .

Based on Definition 8:

let B = α(A, s0), and d(B) = {e1, e2, ..., em}

let B′ = α(A′, s0), and d(B′) = {e′1, e′2, ..., e′m}

∃i ∈ [1,m] such that time(ei) 6= time(e′i)

let n be the smallest index in the above equation such that time(ei) 6=
time(e′i). Without loss of generality we can assume time(ei) = tn
and time(e′i) = tn + d. We can write elements of d(B) and d(B′)
up to the nth element:

d(B) = (v1, t1), (v2, t2), ..., (vn−1, tn−1), (vn, tn)

d(B′) = (v′1, t1), (v
′
2, t2), ..., (v

′
n−1, tn−1), (v

′
n, tn + d)

Using Definition 3, we make the following observations:

(a) : (vn, tn) and (vn−1, tn − 1) ∈ B

EDA
Tool

Inserting logic for tracking
sensitive information

Inserting logic for tracking sensitive
timing variation

Clepsydra (written in python)

Verilog code

 (AST file)

IFT library

 (written in Verilog)
Security Property

IFT-enhanced
Verilog code

Pass
Remove IFT

Modify the design

Fa
il

Fig. 2. Clepsydra overview

(b) : (v′n−1, tn) and (v′n−1, tn − 1) ∈ B′

The above equations specifies that trace B has been updated at time
tn while B′ is not updated. Lets denote the sub-trace of the fully
controlling input J from traces A and A′ with j and j′, respectively.
Based on Definition 5, equation (a) indicates that input j is updated
at time tn, and from (b) we know input j′ is not updated at this time.
This is a contradiction as the only difference between input traces A
and A′ are with respect to set I , and since J /∈ I then j and j′

should be identical.
IV. CLEPSYDRA IMPLEMENTATION

In this section, we describe implementation details of Clepsydra.
As shown in Fig 2, the input to Clepsydra is a hardware design
described by its abstract syntax tree (AST) which is obtained by
parsing its HDL representation. As output, Clepsydra generates a
synthesizable Verilog code which has all the functionalities speci-
fied in the original design, alongside the complementary logic for
propagating both timing based and generic information flows from
design inputs to its outputs. The tracking logic is realized in two
steps: 1) extending each variable in the design with labels sensitivity
level and timing level which indicate if the variable carries sensitive
information or timing variation, respectively; and 2) inserting logic
for updating these labels as their corresponding variables change.
The code generated by Clepsydra is then given to EDA tools for
security analysis. Security properties are assessed by specifying labels
of the input variables and observing the output labels after simulation,
formal verification or emulation. If the output labels comply with the
designers’ intention, the tracking logic is discarded and the original
design can be used for fabrication. In case of violating the security
properties, the original design should be modified, fed to Clepsydra,
and retested.

Clepsydra enables analyzing timing behavior of a design with
respect to any arbitrary subset of its inputs which are marked as
sensitive. This facilitates modeling a variety of security properties.
For example, constant time execution can be tested by marking all
the inputs as sensitive. But in many scenarios we are only interested
in constant execution time with respect to certain inputs. For instance,
when a cache is shared between mutually untrusting processes, timing
variations caused by accesses from sensitive data is exploitable.
However, variations due to cache conflicts on non-sensitive data are
not valuable to the adversary. indiscriminately eliminating all timing
variations results in disabling the cache as a whole. Moreover, many
mitigation techniques are based on randomizing timing variations. To
differentiate benign variations from sensitive ones, we should inspect
the source of the variations. This is done by tracking sensitive data
throughout the circuit, and extracting the sensitive timing variations
from them.

A. Tracking Sensitive Information

Sensitive information affects computation result through both the
data path and the control path, creating explicit and implicit flows. To

Input : Verilog code AST file
Output: IFT-enhanced Verilog code

Preprocessing:
1 for each register r do
2 n: number of the paths to r;
3 m: number of the controllers of r;
4 if n 6= 2m then r bal=0;
5 else r bal=1;

end
6 for each conditional assignment a do
7 traverse CFG;
8 a con = list of controllers;

end
Logic insertion:

9 for each variable x[n : 0] do
10 define x s[n : 0], x t[n : 0];

end
11 for each DFG operation a = b op c; do
12 instantiate IFT-enhanced operation:
13 op IFT (a, a s, b, b s, c, c s);
14 insert time tracking logic:
15 a t = b t | c t;

end
16 for each controller c do
17 insert buffer c buf <= c;

end
18 for each conditional assignment A <= B do
19 insert implicit IFT logic:
20 A s <= B s | c s; ∀c ∈ A con.
21 A t <= (B s & !A bal);
22 | (B t & !(c is non-sensitive and fully controlling);

end
Algorithm 1: Tracking logic generation

detect explicit flows, Clepsydra replaces each data path operation with
an IFT-enhanced version of it which is available as a Verilog module
in a predesigned IFT library (lines 11-13 of Algorithm 1). Each IFT-
enhanced operation receives the original inputs of the operation along
with their sensitivity labels, and computes the outputs of the operation
as well as their sensitivity labels. A simple example of replacing an
add operation with an IFT-enhanced module is shown in the first
line of Fig 3. Various complexity-precision trade-offs for the tracking
logic can be explored by modifying the label propagation rules of the
IFT-enhanced modules [13].

To track whether or not an assignment is implicitly affected by
sensitive data, we need to figure out if its execution depends on
any sensitive variable. To do so, Clepsydra extracts the design’s
control flow graph from its AST representation, and constructs a
list of control signals for each conditional assignment (lines 6-
8 of Algorithm 1). Next, based on the variables in the list and
their sensitivity labels the logic for tracking the implicit flow is
generated and added to the explicit flow tracking logic (lines 18-20
of Algorithm 1).

B. Tracking Timing Flows

Clepsydra inserts logic components at each register interface to
detect if any timing variation is generated from sensitive data, and
whether or not existing variations from the register input flow to
the register’s output (lines 21-22 of Algorithm 1). As we proved
earlier, the necessary condition for formation of timing variation is

1. add_IFT a1 (.in1(N), .in1_s(N_s), .in2(P), .in2_s(P_s), .out(M), .out_s(M_s);
2. assign M_t = N_t | P_t;
3. always @ (posedge clk)
4. begin
5. if (cond)
6. begin
7. A <= B
8. A_s <= B_s | cond_s;
9. A_t <= (cond_s & (!A_bal | (A ~^ B))

10. | cond_t
11. | (B_t & ~(~cond_t & ~cond_s & ~(A_up ^ cond_up)));
12. end
13. X <= A;
14. X_s <= A_s;
15. X_t <= A_t;
16. if (done)
17. begin
18. Y <= X;
19. Y_s <= X_s | done_s;
20. Y_t <= (done_s & (!Y_bal | (Y ~^ X))
21. | done_t
22. | (X_t & ~(~done_t & ~done_s & ~(Y_up ^ done_up)));
23. end
24. else
25. Y <= 0; Y_s <= ...; Y_t <=...;
26. end

1. assign M = N + P;
2. always @(posedge clk)
3. begin
4. //update of “A” is

conditional
5. if (cond)
6. A <= B
7. //“X” is directly

resulted from “A”
8. X<= A;
9. //“done” enforces

constant time updates to
“Y”

10. if (done)
11. Y<= X;
12.
13. else
14. Y<=0;
15. end

(a) (b)

Fig. 3. (a) Original Verilog code, (b) IFT-enhanced Verilog code generated by Clepsydra

existence of a register which update depends on sensitive values.
To identify these cases, we need to determine if a register has the
flexibility of selecting between getting a new value and holding its
current value. To examine this property for each register in the design,
Clepsydra statically enumerates all the paths in which the register
is written to, and compares it with the total number of paths that
the controllers of that register can theoretically activate. If these
two numbers are unequal, a bit which indicates the updates to the
register are tentative is set (lines 1-5 of Algorithm 1). Such analysis
on a Verilog code is relatively easy compared to software languages
since multiple writes to a register are modeled as a single multiplexer
with n data inputs and m control inputs. Tentative update scenarios
happen if n 6= 2m which indicates that the multiplexer has direct
feedback from its output to its own input. To illustrate this idea,
consider the Verilog code written in Fig 3(a) and the IFT-enhanced
Verilog code generated by Clepsydra in Fig 3(b). Highlighted parts
in lines 9 and 20 show the logic responsible for detecting generation
of timing flows. Values of A_bal and Y_bal are statically decided
by Clepsydra after analyzing the branches in the original code. An
XNOR function is also added to detect cases where the register gets
its value from a different variable without actually getting updated.
Even though such scenarios are rare in actual designs, the logic for
detecting them is added to ensure capturing cases where tentative
updates are disguised by renaming the variables.

Once generated, timing variations flow directly through the subse-
quent registers unless special mechanism for eliminating the varia-
tions is implemented. Register X in Fig 3 directly gets its value from
register A, thus if any timing variation is present as the output of
A, it will unconditionally flow to X. As shown in the second line of
Fig 3(b), timing variation directly flows through combinational logic
since we are interested in cycle level precision.

As we proved in the previous section if there exist any non-
sensitive control signal which fully controls the updates to the
register, it can block flow of timing information. To detect existence
of fully controlling signals for conditional assignments to registers,
Clepsydra inserts XOR gates for comparing occurrence of updates.
This logic is shown in lines 11 and 22 of Fig 3(b). The XOR
function indicates that updates of the output register and its controller
are synchronous. And the inverters specify that the controller does

not have any sensitive information. This logic is responsible for
preventing overestimating the flow to some extent as depicted by the
AND function. The logic behind Y_up, A_up, B_up and done_up
are not shown in the figure for simplicity, but they are computed
by XORing the current state with the next state. Since, the updates
to the control signals are observable at the register output with one
cycle delay, Clepsydra inserts buffers to store control values from the
previous cycle in order to compute whether or not they have been
updated in the previous cycle (lines 16-17 of Algorithm 1).

V. EXPERIMENTAL RESULTS

In this section we elaborate how various security properties are
specified based on notion of IFT, and verified on Clepsydra logic.
Table I lists the hardware designs we tested along with the assessed
security properties. For each design, we briefly discuss the archi-
tectural features which create timing channels, the attack model for
exploiting them, the existing mitigation techniques, and the results
of our security analysis. For all of our experiments, we obtained the
AST representation of plain Verilog code by parsing it using Yosis
tool [14], and employed Clepsydra to generate tracking logic. On
the IFT-enhanced code generated by Clepsydra, effect of input X on
timing behaviour of output Y can be inspected by setting the input
signal X_s as high, and observing the value of the output Y_t after
simulation or formal verification.

A. Arithmetic Modules

For the first set of experiments, we sought proving constant time
properties of arithmetic units, as variation in completion time of
these units can be exploited to extract information regarding the
input [8], [7]. We tested a fixed point math library from the Opencores
website [15], which is supposed to run in constant time as claimed by
its designers. In order to verify this claim, we marked data inputs of
each unit as sensitive and observed the timing labels of the outputs.

The multiplication unit is based on accumulating partial products at
each cycle. Thus, if the MSB bits of the multiplier are zero the result
will be available faster since the partial products in the last cycles are
zero. The output ready signal of the design is set after a counter
reaches zero. After analyzing this design, we noticed that while the
ready output is free from timing variations, the product result is
not. This indicates that the result could potentially become available

TABLE I
SUMMARY OF THE DESIGNS AND SECURITY PROPERTIES TESTED USING CLEPSYDRA

Design Security Property Security Specification Result

Division unit Result is ready in constant time set dividend s, divisor s=H, assert(quotient t==L) Proved

multiplication unit Result is ready in constant time set multiplier s, multiplicand s=H, assert(product t==L) Provable after debugging

cache Isolation bw accesses to the same line set index s=H, assert(data t==L) violated

PLcache Isolation bw accesses to the same line set index s=H, assert(data t==L) Provable if sensitive data is preloaded

RPcache Isolation bw accesses to the same line set index s=H, assert(data t==L) Provable if RNG is secure

WISHBONE, round robin Timing isolation bw cores set request1 s=H, assert(ack2 t==L) Violated

WISHBONE, TDMA Timing isolation bw cores set request1 s=H, assert(ack2 t==L) Proved

WISHBONE, TDMA+group Timing isolation bw cores set request1 s=H, assert(ack2 t==L) Provable bw different groups

AES Cipher is ready in constant time set key s, plaintext s=H, assert(cipher t==L) Proved

RSA Cipher is ready in constant time set key s, plaintext s=H, assert(cipher t==L) Violated

before the ready signal is raised. In order to eliminate this flow, we
modified the design by adding a register which blocks the working
result to write to the final output before the counter resets. After this
modification, we could formally prove that the design runs in constant
time using Questa Formal Verification tool. The division unit, similar
to the example we had throughout the paper, is implemented by
subsequently subtracting the divisor from the dividend. Similar to the
multiplication unit, a wait state is responsible for enforcing constant
time updates at the final outputs. This time no timing variation was
detected by our analysis as all the output variables, including the
result itself, are controlled by the wait state.

This set of experiments showed that our model is capable of
isolating different forms of flows, and proving absence of timing
flows while functional flows exist. Furthermore, it shows that the
generated tracking logic is precise enough to detect cases where
timing variations are eliminated by delaying all the updates as long
as the worst case scenario.

B. Cache Implementations

Cache-based side channel attacks have been repeatedly employed
to break software implementations of ciphers such as RSA and AES.
These attacks target implementations which use pre-computed values
that are stored in the cache and accessed based on the value of the
secret key. Thus, an attacker who is capable of extracting the cache
access pattern of the process running the encryption can deduce infor-
mation regarding the key. Percival [4] has shown that an adversarial
process sharing the cache with the OpenSSL implementation of the
RSA cipher can retrieve cache access pattern of the victim process
by inducing collisions in the cache. By remotely attacking AES
implementation of the OpenSSL protocol, Bernstein [3] showed that
timing channels can be exploited even when the cache is not shared
with an untrusted process. In his attack, Bernstein exploited the cache
collisions between different requests by the victim process itself
to reveal the encryption key. While these attacks vary substantially
in terms of implementation, they all exploit the timing variations
from the cache collisions. Several cache designs have been proposed
to bar index value of sensitive accesses to affect the time that it
takes for the cache to retrieve data in later cycles. We have used
Clepsydra to inspect timing flows in an unsecure cache and two secure
architectures, PLcache and RPcache, introduced in [16]. To model
timing leakage via external interference, we consider two processes
with isolated address spaces sharing the same cache. Marking indexes
of accesses made by one process as sensitive, we want to figure
out if the data read by the other process contain timing variation.

The internal interference scenario is modeled with a single process
and inspecting if marking certain indexes as sensitive causes timing
variation when the same lines are read with different tags.

PLcache eliminates leakage channel by letting processes to lock
their data in the cache and disabling their eviction. Since sensitive
data can no longer be evicted, it cannot affect the timing signature
of the system. We implemented the PLcache and acquired its IFT-
enhanced tracking logic from Clepsydra to test if this partitioning
scheme eliminates the flow. Based on our analysis, if data with
sensitive indexes is preloaded to the cache and locked, there will be
no information leakage as the result of later accesses to the locked
lines. However, this result is based on assuming that the preloading
stage is not sensitive itself.

Next, we tested the RPcache which randomly permutes the map-
ping of memory to cache addresses to eliminate any exploitable
relation between the collisions. When external interference between
untrusting processes are detected, PRcache randomly chooses a cache
line for eviction . Thus, the attacker cannot evict the victim’s process
sensitive information and observe whether or not that causes delay
later on. In case of internal interference, collisions are handled by
directly sending the data from the colliding access to the processor
and randomly evicting another line. Our analysis showed that RP-
cache eliminates timing variations assuming that the inputs to the
random number generator are not sensitive.

C. Bus Architectures

Another source of timing channel in hardware designs arises when
different units are connected over a shared bus. In such scenarios,
cores that are supposed to be isolated can covertly communicate by
modulating the access patterns to a shared resource and affecting the
time when other cores can use the same resource. Using Clepsydra,
we have inspected presence of timing flows when WISHBONE
interconnect architecture is used to arbiter accesses on an SoC. To
access a shared resource over WISHBONE, the master core sends
a request signal, and waits for the arbiter to send back an ack
signal. Timing channel between different cores can be assessed by
marking the request signal sent by one core as sensitive and
observing the timing label of the ack signal sent to the other
core in later requests. We have tested this scenario for the original
WISHBONE arbiter and two modified versions of it.

The original WISHBONE arbiter, implemented by the Opencores
community [17], is based on a round robin algorithm. Our ex-
periments revealed existence of timing channel between the cores
connected over this architecture as the grant given to one core

depends on the former requests sent to the arbiter. In order to
eliminate the channel, we replaced the round robin arbiter with a
TDMA scheme and retested the design. In this case, no timing
channel is detected as the grants are given based on a counter. In
order to improve the efficiency of the arbiter, we tested a more flexible
scenario where the cores are divided into two different groups. The
cores within the same group are arbitrated based on a round robin
algorithm, while the two groups are time multiplexed. This time our
experiments showed that the two groups are isolated from each other
while timing channel exists between elements of the same group.

D. Crypto Cores

Lastly, we tested timing variation in hardware implementation of
RSA and AES ciphers. Since the ciphertext is computed from the key,
functional flow from the key to the cipher is inevitable. Thus, existing
IFT tools cannot be leveraged to inspect existence of timing channels
which are not intended by the designer. Here, we have tested existence
of timing channel in two ciphers from the Trusthub benchmarks [18].
We have assessed timing flow from the secret key to the ciphertext
by marking the key bits as sensitive and observing the timing label
of the output. Using Questa Formal Verification tool we could prove
that the AES core runs in constant time. However, for the RSA core,
timing flow was detected from the secret key to the cipher as a result
of insecure implementation of the modular exponentiation step. We
have left comparing timing leakage of different RSA architectures
and the effectiveness of the proposed mitigation techniques as our
future work.

VI. RELATED WORK

Over the past decade, multiple tools have been developed for track-
ing information flows through hardware designs. Tiwari et al [12]
implemented a microprocessor which dynamically tracks information
flows through the shadow logic added for each gate. Due to the
huge overhead in terms of power, area and performance, gate level
information flow tracking (GLIFT) has been used mostly for test and
verification during design time [19]. Oberg et al [20] has proved that
inserting shadow logic at the gate level detects all information flows
including timing and functional flows.

At a higher level of abstraction, multiple secure HDL languages
have been introduced to enable designing provably secure hardware.
Caisson [21] and Sapper [22] are both FSM based languages extended
with a type system. Using these languages, the designer defines a
security label for each variable and restricts information flows by
controlling the transactions between the states. SecVerilog [9] adds
a type system to the Verilog language for representing different
security levels. SecVerilog users are required to define a type for
each variable in the design based on the property they wish to enforce.
SecVerilog type system statically verifies that the user defined types
and the IFT property comply. While these tools facilitate secure
hardware design, they require redesigning the hardware using a new
language. VeriCoq [23] automatically transfers HDL codes to Coq
representation where security properties can be tested on annotated
code. While all these methods employ conservative tracking rules
by raising each signal’s label to the highest label of its predecessor
signals, RTLIFT [11] allows for more flexible flow tracking rules.
Based on the precision level specified by the user, RTLIFT generates
the flow tracking logic for the design under test, which can be used
to analyze different security properties.

As stated earlier, all of the mentioned IFT tools track all logical
information flows through a single channel and leave the nature of the
detected flows as unspecified. In this work, we presented a method for
tracking timing flows and generic information flows in two separate

channels in order to enable analysis of a wider range of security
properties. VII. CONCLUSION

In this work we presented a model for tracking timing-based infor-
mation flows in hardware designs. We formally proved that our model
soundly captures all timing variations and precisely separates timing
flows from logical flows. We introduced an IFT tool, Clepsydra,
which automatically generates tracking logic based on the proposed
model. Clepsydra facilitates hardware security verification by enhanc-
ing plain HDL codes with synthesizable logic on which variety of
security properties can be tested using conventional EDA tools. In
our experiments, we leveraged Clepsydra to detect timing channels
in different architectures, and prove absence of timing leakage when
mitigation techniques such as randomization, partitioning or delaying
till the worst case execution are implemented.

VIII. ACKNOWLEDGEMENT

This material is based upon work supported by the National Sci-
ence Foundation under grant no. CNS-1527631 and CNS-1563767.

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” Advances in Cryptology - CRYPTO’96.

[2] W. Schindler, “A timing attack against rsa with the chinese remainder
theorem,” in International Workshop on Cryptographic Hardware and
Embedded Systems, 2000.

[3] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.
[4] C. Percival, “Cache missing for fun and profit,” 2005.
[5] W.-M. Hu, “Reducing timing channels with fuzzy time,” Journal of

computer security, 1992.
[6] J. Oberg et al., “Information flow isolation in I2C and USB,” in Design

Automation Conference (DAC), 2011.
[7] O. Aciicmez and J.-P. Seifert, “Cheap hardware parallelism implies

cheap security,” in Fault Diagnosis and Tolerance in Cryptography.
Workshop on. IEEE, 2007.

[8] M. Andrysco et al., “On subnormal floating point and abnormal timing,”
in IEEE Symposium on Security and Privacy, 2015.

[9] D. Zhang et al., “A hardware design language for timing-sensitive
information-flow security,” in ACM SIGARCH Computer Architecture
News, 2015.

[10] Y. Jin and Y. Makris, “Proof carrying-based information flow tracking
for data secrecy protection and hardware trust,” in 2012 IEEE 30th VLSI
Test Symposium (VTS).

[11] A. Ardeshiricham et al., “Register transfer level information flow track-
ing for provably secure hardware design,” in Proceedings of the 2017
Conference on Design, Automation & Test in Europe.

[12] M. Tiwari et al., “Complete information flow tracking from the gates up,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems, 2009.

[13] W. Hu et al., “Imprecise security: quality and complexity tradeoffs
for hardware information flow tracking,” in Proceedings of the 35th
International Conference on Computer-Aided Design.

[14] “Yosys Open SYnthesis Suite,” http://github.com/cliffordwolf/yosys.
[15] https://opencores.org/project,verilog fixed point math library.
[16] Z. Wang and R. B. Lee, “New cache designs for thwarting software

cache-based side channel attacks,” in ACM SIGARCH Computer Archi-
tecture News, 2007.

[17] https://opencores.org/opencores,wishbone.
[18] https://www.trust-hub.org/.
[19] M. Tiwari et al., “Crafting a usable microkernel, processor, and i/o

system with strict and provable information flow security,” in ACM
SIGARCH Computer Architecture News. ACM, 2011.

[20] J. Oberg et al., “Leveraging gate-level properties to identify hardware
timing channels,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems.

[21] X. Li, M. Tiwari et al., “Caisson: a hardware description language for
secure information flow,” in ACM SIGPLAN Notices.

[22] X. Li, V. Kashyap et al., “Sapper: A language for hardware-level security
policy enforcement,” in ACM SIGARCH Computer Architecture News.

[23] M.-M. Bidmeshki and Y. Makris, “Toward automatic proof generation
for information flow policies in third-party hardware ip,” in Hardware
Oriented Security and Trust (HOST), 2015 IEEE International Sympo-
sium on.

