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Abstract—Secure hardware design is a challenging task due
to the fact that security properties are difficult or impossible to
model and subsequently verify using traditional hardware design
tools. The “state of the art” for hardware design security relies
heavily on functional verification, manual inspection, and code
review to identify security vulnerabilities. This labor intensive
process significantly reduces productivity while proving no guar-
antee that a security flaw will be identified. In this paper, we
describe a property driven approach to hardware security, which
allows automatic synthesis and verification of both qualitative and
quantitative security properties. We address hardware security
by enforcing information flow and statistical security properties.
By incorporating a new security property specification language,
such security properties can be specified, translated and verified
using hardware design tools. We present design examples to
demonstrate our property driven hardware security solution for
proving isolation, detecting timing channel, eliminating hardware
Trojan, and enforcing security related statistical properties.

I. INTRODUCTION

In the past, computer security largely assumed that the un-
derlying hardware was secure and dependable. This is clearly
no longer true as there are many demonstrated attacks that
take advantage of hardware specific security vulnerabilities.
For example, smart cards running cryptographic algorithms
leak the secret key through their power consumption [1]; web
browsers disclose login credentials due to runtime variations of
arithmetic operations [2]; logically isolated virtual machines
running in the cloud leak private information through inter-
actions caused by shared hardware resources [3]; a flaw in
Qualcomm’s TrustZone implementation was used to break
Android’s full disk encryption [4]; compromised hardware was
used as a foothold to hack into a commercial jet [5]; and there
is speculation that hardware backdoors are present in military
weapons allowing them to be remotely disabled [6]. With
an increasing number of hardware security flaws reported,
it is clear that we have reached a time where hardware has
become an attractive attack surface that can be exploited with
potentially large consequences.

The “state of the art” for hardware design security relies
heavily on manual inspection and code review. For example,
chip manufacturers have large and growing security audit
teams, e.g., Intel’s Security Center of Excellence (SeCoE) and
the Qualcomm Product Security Initiative (QPSI) group, that
provide code reviews to hardware designs to identifying secu-
rity flaws. This process is labor intensive and also significantly
reduces productivity. Even worse, it provides no guarantee
that a security flaw could be identified. This is largely due to

the lack of effective tools supporting secure hardware design.
Simply stated, it is difficult to evaluate security alongside
traditional design parameters like resource usage, performance,
and power for design space exploration.

Automated security evaluation of hardware designs requires
more and better hardware security verification tools. These
must allow for the specification of security properties and the
ability to verify that the design adheres to those properties. We
envision three fundamental elements for a hardware security
design flow. First, we need a systematic approach for speci-
fying security properties. Then, we need models to describe
the security related behavior of a hardware design. Finally, we
need techniques that use those models to verify these security
properties on the hardware design.

However, these fundamental elements largely remain open
research problems. We lack hardware security models to
describe security related properties as is done with func-
tional verification. Property specification languages provide
a solution for specifying and enforcing functional properties
(e.g., allowed values and event sequences). Unfortunately,
they cannot easily be expanded to capture security related
properties. There are common and widespread specifications
for security properties, e.g., lattices for information flow [7]
and mutual information for statistical information leakage [8].
We must integrate these into the hardware design flow in a
manner that allows for their efficient verification.

In this work, we propose a property driven approach to
hardware security. We discuss various types of security prop-
erties that should be enforced for secure hardware design
and describe the features of a security property specification
language. We demonstrate our property driven security solu-
tion using concrete design examples. More specifically, the
contributions of this work are:

• Describing hardware security models based upon infor-
mation flow and statistics;

• Using those information flow and statistical models to
specify hardware security properties;

• Demonstrating our property driven hardware security
methodology on several design examples.

The reminder of the paper is organized as follows. Section II
introduces our property driven hardware security approach.
In Section III, we describe different types of information
flow and statistical security models and the properties that
they enable. We discuss the key components of a security
specification language in Section IV. Section V presents design



examples to demonstrate our property driven hardware security
methodology. Section VI discusses future research directions,
and we conclude in Section VII.

II. PROPERTY DRIVEN HARDWARE SECURITY

The existing hardware design process can be roughly broken
down into two parts: synthesis and functional verification. The
synthesis process translates the hardware designs into different
levels of abstraction – from an untimed functional model to
register transfer level model to gate level model and finally
a physical model. Functional verification insures that these
synthesis processes are correct, and it determines that the
hardware design meets certain functional properties.

However, functional correctness does not necessarily imply
a secure system. A functionally correct design could have
security flaws when the specification itself is insecure. This
is the fundamental problem that we try to address, and we
need more and better hardware security design tools in order
to insure that the specification is secure in addition to insuring
that the synthesis process is functionally correct.

Thus, we argue that security verification must be added
as a third pillar to the hardware design process alongside
synthesis and functional verification. In particular, we see a
significant gap in the ability to specify security properties a
la Property Specification Language (PSL) and SystemVerilog
Assertions (SVA). To close this gap, we propose a property
driven secure hardware design flow that incorporates security
oriented languages and models that enable the specification
and verification of security properties on a hardware design.
Figure 1 provides an overview of our proposed hardware
security design methodology. It integrates property driven
security verification as an additional path alongside synthesis
and functional verification.
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Fig. 1. We argue that the standard synthesis and functional verification process
(center and left columns, respectively) must be augmented with a property
driven hardware synthesis process (shown in the third/right column).

Property driven hardware synthesis starts with high level
specification of the security policies that the system on chip
(SoC) architecture should adhere to. These properties may
be hardware-agnostic as the complete details of the SoC
architecture are not fully specified. One example of a security

policy could be that CPU1 cannot read from or write to the
Firmware (see Fig. 2)
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Fig. 2. A representative SoC architecture. We use this architecture to motivate
the need for different hardware security properties throughout the paper.

As the SoC architecture is refined, we can similarly refine
the security policy into a security property. For example, the
mentioned security policy will be modified to there should be
no information flow between the memory spaces of CPU1 and
Firmware, or more formally:

assert iflow CPU1_MEM =/=> FW_MEM
assert iflow FW_MEM =/=> CPU1_MEM

When the hardware design is compiled to RTL or gate
netlist, we can further map the security property to two secu-
rity assertions as follows. These assertions can be instantiated
along with the information flow model (described in more
detail in the Section III) for the hardware design to verify
for security guarantees.

set CPU1_MEM_taint[M:0] := 1
set default_taint := 0
assert FW_MEM_taint[N:0] == 0

set FW_MEM_taint[N:0] := 1
set default_taint := 0
assert CPU1_MEM_taint[M:0] == 0

There are many different security properties that one would
want to check, e.g., those related to isolation/separation, in-
tegrity, confidentiality, and mitigating or eliminating side chan-
nels. We need languages to specify these security properties
in a manner that is amenable to verification. At the center of
this lies models that accurately encompass both the hardware
design and security properties. These models ideally allow
expressiveness of the properties and the ability to quickly
perform formal, simulation, and emulation techniques. We
identify information flow and statistical measures as a basis
for two fundamental security models that are comprehensive,
expressive, and verifiable.

III. HARDWARE SECURITY MODELS AND PROPERTIES

A. Information Flow Models and Properties
Information flow models rely on the notion of non-

interference, which was first described by Goguen and



Meseguer [9]. It models flow relationships using a security
lattice [7], and security properties can be written based upon
flow relationships. One can view this as affectability or observ-
ability. For example, we can state that untrusted data should
not be able to affect (flow) to the program counter. Or that
confidential information should not be observable (flow) to an
unprotected memory space.

Information flow analysis has a long history for modeling
computer system security properties. Denning was amongst
the first to take an information theoretic approach to reason
about security [7]. McLean [10] and Gray [11] made sig-
nificant contributions in formalizing security properties using
an information flow model. Since that time, information flow
analysis has been used across different layers of the computer
system stack [12], [13], [14], [15] to analyze the security of the
system or to ensure it behaves in a secure manner. Recent work
on hardware information flow tacking (IFT) [16], [17], [18],
[19], [20], [21], [22] allows expressing flow related security
properties on a hardware design. There are a wide range of
security properties that can be modeled using information flow.
These include confidentiality, integrity, isolation/separation,
timing channels, and hardware Trojans.

Confidentiality properties ensure that certain data will never
flow to a publicly viewable area of the hardware. To give a
few examples, the key or intermediate results in cryptographic
cores should not directly flow to a point observable by an
attacker (e.g., the ciphertext). Sensitive information should not
flow to an untrusted IP component through interactions with
shared resources (such as buses and memory). Private data
in your GPS unit should not be allowed to flow to a public
output, allowing an attacker to learn your location. And you
would never allow your financial or biometric records to flow
to somewhere that can be viewed by an unauthorized party.

Integrity is the dual property of confidentiality. Here, we
mark untrusted areas of the hardware and verify that they do
not affect any critical portion of the design. For example, we
want to make sure that the secret key is never overwritten
with unprotected data from an open communication port. We
require that a untrusted IP component never modifies the
firmware or that a low privileged hardware module does not
interrupt critical operations.

Isolation and Separation can be enforced as an information
flow security property stating that there should never be infor-
mation exchange between two given hardware components.
For example, the memory space for secure and non-secure
IP cores should not overlap; untrusted IP cores should be
isolated from the shared bus when a trusted one is transmitting
information. E.g., previous work has employed gate level
information flow tracking to prove isolation between trusted
and untrusted IP cores in SoC designs [18].

A timing channel can also be modeled using information
flow. By definition, a timing channel between two variable
exists if the value of one affects the timing behavior of the
other without necessarily altering its value. As an example,
there can a timing channel from the private key to the
ciphertext ready signal in an RSA core. The ready signal will

be asserted whenever the encryption is done, but there is a
timing channel if the encryption time is a function of the key
or the plaintext.

Certain types of hardware Trojans can be detected using
information flow security verification as well. Information
flow analysis captures Trojans that leak sensitive information
(e.g., the secret key) or manipulate critical data (e.g., the key
register). A recent work has developed a classification of the
types of Trojans that are detectable by verifying information
flow security properties [22].

While information flow models are powerful for verifying a
variety of security properties, they are not without drawbacks.
For instance, existing information flow analysis techniques
tend to provide a binary answer to security. Specifically, they
indicate that no flow occurs or that there is at least one, but do
not provide any indication on its severity. It is often desirable
to understand a broader range of security properties, such as: is
the secret key evenly mixed after a cipher block? Is the random
number generator producing truly random sequences? And
what is the maximum amount of information that is leaked
through a side channel? Existing information flow analysis
techniques are inadequate for modeling and verifying such
quantitative and statistical security properties.

B. Statistical Models and Properties

Statistical measures provide a basis for models that allow
describing a different type of security properties than the ones
that can be done with information flow models. We motivate
the employment of statistical measures as a model for security
by presenting some examples of statistical security properties.

Entropy (H) describes the expected information, or uncer-
tainty, inherent in the probability distribution of a random vari-
able. In addition, entropy is a measure of channel capacity, in
that it provides an upper bound on the amount of information
that can flow through that channel. E.g., we can use it to write
a property such as H(V ) = X , which states that we can learn
at most X bits of information from some variable V .

Mutual information (MI) is useful for describing the
amount of information that passes through a channel. MI
provides a measure of the dependence between two variables,
quantifying the amount of information that one variable reveals
about the other. Previous work has shown that MI between
the key and the encryption time has a strong correlation
with the success determining the key through timing channel
attacks [23]. Thus, one could use this to write a property such
as the MI between the key and the encryption time should be
less than Y bits, i.e., MI(key; enc time) < Y .

Quantiles characterize the distributions of random vari-
ables. They are closely related to the concepts of cumula-
tive frequency distributions and histograms. A sequence of
quantiles is as useful as a histogram for providing summary
statistics about a random variable except that it makes it
simpler to answer questions posed in terms of order statistics,
which are more robust indicators of common distribution-
related inquiries. Since distribution functions are fundamental
to statistical measures, quantiles enable us to build up other



more complex and robust statistical models. For example,
consider the security policy that a pseudorandom number
generator (PRNG) behave correctly. A misbehaving random
number generator can significantly compromise the security of
a supposedly secure platform [24]. Thus, one would want to
specify the property that a random number generator’s outputs
must be random, or more specifically, that its output should
have some known probability distribution. A possible property
to enforce this might be Quantile(PRNG, [α0, α1, . . . , αn]) =
Uniform(0, 1, ’Quantile’, [α0, α1, . . . , αn]), specifying that n
quantiles, α0, α1, . . . , αn, of the observed distribution must
match those of a uniform distribution.

IV. SECURITY PROPERTY SPECIFICATION LANGUAGE

In order to prove that a hardware design is secure, one
must formally describe the properties it should adhere to.
These properties must be specified in a formal and succinct
manner. And this must be balanced with expressibility and
usability of the property specification language. Specifically,
the language must be usable by both security experts and
hardware designers. The properties can be easily expressed by
anyone, not merely security experts. And hardware designers
should be able to understand and refine the properties.

Ideally, we have something similar to an existing hardware
specification and assertion language. The security experts and
hardware designers will use the language to state security poli-
cies, properties, and assertions. The language needs a method
to specify sensitivity levels, affectability, and observability.
It should also support quantifiers for measuring statistical
properties. And finally, it should be easily amenable to use
existing verification techniques to show that the design adheres
to the specified security policies and properties. The following
provides an example language that specifies security properties
related to the SoC design in Fig. 3.

1: set sensitivity Firmware, Crypto, GPS := TRUSTED
2: set sensitivity RAM, Ethernet, JTAG := UNTRUSTED
3: set sensitivity CPU2, Firmware, Crypto := PRIVILEGED
4: set sensitivity MCU := UNPRIVILEGED
5: set quantifier Crypto time := TIMER

6: assert isolate(TRUSTED, UNTRUSTED)
7: assert isolate(PRIVILEDGED, UNPRIVILEGED)
8: assert isolate(JTAG, Firmware) when !Debug mode
9: assert noflow(Crypto key, Ethernet)

10: assert H(Crypto time) <= 0.5
11: assert MI(Crypto key, Crypto time) <= 0.2

We write properties that classify the cores into different se-
curity classes (E.g., TRUSTED, UNTRUSTED, PRIVILEGED
and UNPRIVILEGED). We then use the language to specify
allowed information flows between different cores. We insert
quantifiers (e.g., a timer to measure encryption time) to enable
statistical properties related to timing channels. Finally, we
use the language to specify the security properties to be
checked, e.g., the TRUSTED (PRIVILEDGED) IP cores should
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Fig. 3. A refinement of part of the SoC design from Fig. 2 which is used to
demonstrate example security properties.

be isolated from the UNTRUSTED (UNPRIVILEGED) ones;
JTAG cannot access the Firmware out of debug mode; the
Crypto key should not flow to the Ethernet; the entropy of
encryption time measurements should be less than 0.5 bits; and
the mutual information between the secret key and encryption
time measurements should be less than 0.2 bits etc.

V. DESIGN EXAMPLES

A. Isolation and Separation
In an SoC design, the IP cores may be designed by IP

vendors of different trust. As an example, IP cores designed
by a third-party are usually considered untrusted while those
developed in-house are regarded as trusted. Furthermore, it
is usually desirable to put the trusted IP components in a
secure domain and isolate them from untrusted components.
The concept is similar to what is enforced by the ARM
TrustZone [25]. Figure 4 shows such a design example.
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Fig. 4. Isolating trusted IP components from untrusted.

In this example, we separate the AES, RSA, Firmware, ROM
and RNG cores into a trusted computing environment and
isolate them from those connected to an open network. Here,
we need to tightly control the information flows between the
untrusted and trusted environments. For confidentiality, we
should not allow sensitive data from the Firmware or ROM to
leak to any untrusted IP component; the CPU1 is only allowed
to read from the output data port of the AES and RSA cores.
For integrity, the untrusted cores are not allowed to write to the
Firmware; the PCIe core is not allowed to access the address
space assigned to the AES and RSA cores; CPU1 can only
write to specific addresses of the AES and RSA cores; and
the Debug port is only allowed to update the Firmware when
in debug mode. These can all be enforced by specifying and
verifying properties related to information flow.

B. Timing Channel
The RSA cipher algorithm contains a conditional branch

structure that can cause variations in encryption time, i.e., the



time when the ciphertext ready signal is asserted. Figure 5
shows an RSA implementation. Previous work has demon-
strated that there can be a timing channel in this imple-
mentation, which allows the attacker to recover the private
key through statistical analysis of encryption time [26]. Such
timing channel can be captured by proving information flow
and statistical security properties.
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Fig. 5. A serial RSA implementation that has a timing channel.

One security property that we need to check is that there
is no information flow from the key to the ready signal. This
guarantees strong non-interference between the key and the
ready signal. If the property fails to hold, then there can be a
timing channel, and we may wish to understand the severity of
this leakage. In this case, we could specify a statistical security
property stating that the entropy of the encryption time under
different keys and plaintexts is minimal, which will depend
upon the risk tolerance of the system.

C. Hardware Trojan

Hardware Trojans are malicious design modifications that
are designed to trigger under rare conditions, and thus be
difficult to detect using functional verification. Figure 6 shows
an AES core from Trust-HUB [27]. The core contains a
hardware Trojan that modulates the key to leak through the
unused pin Antena1. Functional testing will likely fail to detect
this Trojan since it is activated after 2129 − 1 successive
encryption operations.
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Fig. 6. A hardware Trojan design from Trust-HUB.

However, the Trojan design can be captured by proving
an information flow security property stating that the key
should never flow to Antena. Generally, information flow
models are effective in detecting Trojans that cause violation
of confidentiality or integrity properties [22].

D. Random Number Generation

Figure 7 shows a Johnson noise based random number
generator used by Intel [28]. We may wish to check if the
random number sequence is uniformly distributed, and thus

1Note that this is the way the signal is declared in the benchmark.

behaving properly. This can be measured using a statistical
property, e.g., the entropy of the random sequence. In addition,
we may want to make sure that the random sequence will not
become biased under a disturbance (e.g., thermal variation).
A possible solution is to add a real-time monitor to measure
the probability distribution function of the outputted random
numbers. This could be done using a set of small and efficient
quantile estimators.
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Fig. 7. A Johnson noise based random number generator by Intel [28].

VI. POTENTIAL RESEARCH DIRECTIONS

We identify future research directions in developing models,
languages, and tools that allow for the efficient specification
and verification of security properties on a hardware design.

A. Improve Information Flow Models

A first research direction is to improve the quality of existing
information flow models and establish new models that support
a wider range of security properties.

Precision and Complexity Tradeoffs: Precision and com-
plexity of information flow models are two dominant (but
contradictory) factors on security verification performance.
Developing effective methods for complexity and precision
tradeoffs can see benefits in accelerating security verification.

High-level Information Flow Models: High-level models
are usually more expressive and efficient for testing and
verification. Constructing information flow models for Sys-
temVerilog and high-level synthesis will allow more general
security properties be verified during an earlier design phase.

Quantitative Information Flow Models: Quantitative mod-
els allow finer assess of security. Creating models for per-
taining the severity of the flow, e.g., precisely measuring
the amount of information flow and proving boundaries on
information flow, is an interesting research topic.

B. Derive Statistical Security Models

We need effective statistical measurements for security and
efficient methods for calculating these measures.

Statistical Security Measurements: We need more sta-
tistical measurements for different security properties, e.g.,
probability distribution functions, statistical distances and cor-
relation measures. This is an important step for deriving
generic parameters for measuring hardware security.

Statistical Security Measure Estimation: Designing esti-
mators for precise estimation of statistical security measures



with a minimum number of samples is an important research
direction. It also can beneficial to develop light-weight online
estimators that can detect security violations in real-time.

C. Develop Security Property Specification Languages

The following research vectors are essential for developing
hardware security specification languages:

Security Attributes: We need to formalize a minimum set
of security attributes from various types of security properties.
Such a set should be semantically complete for describing
sensitivity, privilege, affectability, observability, statistical dis-
tribution and quantitative information flow. This will help
define the basic elements (e.g., key words, operators and
semantics) of the security property specification language.

Security Properties: The security specification language
should support a wider range of properties. Apart from in-
formation flow and statistical properties, it should be able
to model modes of operation (e.g., debugging, secure boot,
and normal mode), complex global properties (e.g., access
policies rules in SoCs and NoCs) and firmware properties (e.g.,
different configurations).

Security Property Compilation: There is a gap between
the semantics of security specification languages and hardware
security models. We need to define rules and develop tools
that allow security properties be automatically translated and
mapped to security models in order to be verified.

VII. CONCLUSION

We provide a property driven approach to hardware security.
The proposed approach enforces hardware security by specify-
ing and checking information flow security properties related
to confidentiality, integrity, isolation/separation, side channels,
and hardware Trojans as well as statistical security properties
such as entropy and mutual information. The ultimate goal
is to develop security property specification languages and
hardware verification tools that allow efficient formal analysis,
simulation, and emulation of these security properties for
secure hardware design.
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