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Abstract—Hardware Trojans are a significant security threat due to the
globalization of hardware design and supply chain. We demonstrate a new
type of hardware Trojan hidden behind internal don’t care conditions.
The proposed Trojans can pass through formal equivalence checking;
they may reside after logic synthesis optimizations; and they are resilient
to switching probability and side channel analysis. The new Trojans
can create a surface for fault attack to retrieve secret information or
downgrade performance by increasing power consumption. Experimental
results show that these Trojans may stay after logic synthesis and
that secret information can be retrieved using fault attack. We present
detectability analysis and suggest synthesis optimizations as well as
countermeasures that can help mitigate this new Trojan.

Index Terms—Hardware security and trust, hardware Trojan, don’t
care, fault attack, countermeasure

I. INTRODUCTION

The design and fabrication of modern hardware typically involve
multiple teams spread around the world. This process often requires
integrating disparate intellectual property (IP) cores developed by
an untrusted third party. These IP components may be built with
unspecified malicious functionality in addition to its specification.
Additionally, an untrusted manufacture may also make undocumented
changes to introduce desired functionality. Such malicious design
modifications, identified as hardware Trojans, represent a major type
of threat to hardware security and trust. They may provide a hidden
channel to leak sensitive information or a back door for attackers
to compromise a system. A number of reports show that hardware
Trojans may even reside in critical devices responsible for protecting
personal privacy [1], controlling high-assurance systems [2], and
operating military weapons [3].

There are numerous examples demonstrating the possibility of in-
serting small and hard-to-detect Trojans into hardware designs, which
is an important motivation for the development of more effective
hardware Trojan detection methods. Tehranipoor et al. [4] and Karri et
al. [5] were among the first to propose a comprehensive and complete
taxonomy for a better understanding of potential threats caused
by hardware Trojans. Trust-HUB.org further complemented these
hardware Trojan classification systems and released a full set of Tro-
jan benchmarks for evaluating the effectiveness of hardware Trojan
detection methods. These benchmarks typically use rare events, e.g.,
a timer or a specific input pattern, to generate the Trojan trigger [6].
These simple trigger mechanisms are very sensitive to switching
probability analysis [7]–[9]. More recent Trojan benchmarks use
multiple discrete trigger signals to multiplex different portions of
the design to the output [10], [11]. This will increase the switching
probability of each trigger signal and better protect the Trojan from
being detected. However, these hardware Trojan designs still assume
explicit trigger signals. Hardware Trojan detection techniques using
tagging or don’t care analysis will identify the Trojan design as
malicious or redundant [12], [13].

To prevent the Trojan design from being identified, researchers
have leveraged unspecified functionality (i.e., external don’t cares)
for hardware Trojan insertion. Such external don’t cares allow Trojan
designers to exploit the unassigned states in the design space to
implement additional functionality [14]–[17]. The resulting hardware
design will be a super set of its original specification. Thus, formal
verification will indicate that all specified functionalities are cor-
rectly implemented. Although this provides a promising approach for
hardware Trojan insertion, it does not apply to completely specified
functions, where all external don’t care conditions are assigned to
deterministic values.

We propose a new method that exploits internal don’t care condi-
tions for hardware Trojans. We search for internal don’t cares origi-
nating from reconvergent fanouts to generate the Trojan trigger. Thus,
our technique does not require explicit specification of don’t cares,
and will work even if the function is completely specified (unlike
previous techniques using external don’t cares). Our method inserts
the Trojan in such a way that the designs with and without the Trojan
are logically equivalent (unlike previous techniques implementing a
super set). Consequently, formal equivalence checking tools will not
find the inserted Trojan. We leverage the difference in path delay
and use fault attack to force the design into an unreachable condition,
which will allow the Trojan to activate and leak information. We also
take advantage of the flexibility resulting from don’t care condition
to introduce redundant logic in order to downgrade performance.

In this paper, we exploit internal don’t care conditions for a new
type of hardware Trojan. We show that the Trojan may stay after logic
optimizations and demonstrate the possibility of using fault attack to
activate the Trojan to leak secret information. Our work expands
the hardware Trojan spectrum and motivates the need for new Trojan
detection methods. Specifically, we make the following contributions:
• Proposing a new type of hardware Trojan triggered by internal

don’t care conditions;
• Providing a fault attack to activate the Trojan to leak secret

information;
• Presenting experimental results to evaluate our hardware Trojan

designs.
The reminder of the paper is organized as follows. In Section II,

we briefly review the related work. Section III describes our threat
model. Section IV discusses internal don’t care conditions and the
details of our Trojan design. Section V presents experimental results
and detectability analysis. We conclude in Section VI.

II. RELATED WORK

We identify related work that enables a better understanding of
the potential security threats caused by hardware Trojans. We focus
on Trojan design approaches and only briefly cover hardware Trojan
detection methods when relevant.



Tehranipoor et al. [4] and Karri et al. [5] provided hardware
Trojan taxonomies. Hardware Trojans were classified according to
the insertion phase, abstraction level, trigger mechanism, payload
effects, and location. Such classification systems allow both hardware
designers and security researchers a comprehensive understanding
of the common characteristics of hardware Trojans. Trust-HUB.org
released a set of hardware Trojan benchmarks that cover the clas-
sification systems [6]. These benchmarks have played an important
role motivating the development of various Trojan detection methods.
However, these benchmarks typically use a counter or specific input
pattern to generate a trigger signal. Since Trojans are usually triggered
only under rare events in order to escape from being detected, the
trigger signal will have an extremely low switching probability. As
a result, the Trust-HUB benchmarks are very sensitive to switching
probability analysis [7]–[9].

To defeat switching probability based Trojan detection methods,
researchers proposed more intelligent methods for hardware Trojan
design. They use multiple discrete trigger signals to multiplex differ-
ent portions of the design to the output [10], [11]. Trojan benchmarks
designed in this manner are more resilient to switching probability
analysis. However, these benchmarks still assume that the Trojan
payloads will only be activated under rare conditions. Consequently,
tagging based switching probability analysis and don’t care based
equivalence checking will still identify the Trojan design as malicious
or redundant [12], [13].

The most relevant work uses unspecified functionality for hardware
Trojans. When possible, it is desirable to specify signals under
certain conditions as don’t cares for logic optimization. Such external
don’t cares provide the flexibility to allow implementing additional
functionality for Trojan insertion. Fern et al. [15], [16] proposed an
approach to search among don’t cares specified as X-states to insert
hardware Trojans. Carefully chosen X-states are assigned to specific
values under the don’t care condition to leak information. In [18],
a technique was proposed to detect hardware Trojans modifying
unspecified functionality. The observation is that under condition C,
an unspecified signal x should not affect critical points of the design
otherwise could be malicious. It formulates a SAT problem to check
if x could affect any critical points under given condition. Other work
focuses on unoccupied state encoding to add extra states into the state
machine [14], [17]. Such extra states are never reached during normal
operation. An attacker can use fault attack to force the state machine
into the desired state to perform malicious activities. These types
of Trojans can be hard to detect because functional verification will
indicate that all specified functionalities are correctly implemented;
the additional Trojan design is out of the specification and thus will
not be covered in verification. However, these methods will not work
if the design is completely specified.

In this work, we exploit internal don’t care conditions for hardware
Trojan design. Such don’t cares originate from signal correlations
caused by reconvergent fanout. Thus, they widely exist even in
completely specified hardware designs. We show that the proposed
hardware Trojan can be implemented by slightly altering the descrip-
tion style of the design, and they can create a channel to leak secret
information through fault attack.

III. THREAT MODEL

The proposed Trojan can be inserted during various phases of the
hardware design cycle, e.g., by a rogue designer at design entry,
compromised synthesis tools while implementation or an untrusted
manufacture during fabrication. In this work, we primarily focus our
analysis on IP cores provided by an untrusted third-party. These IP

products may come in the forms of either soft cores (in RTL code
or generic gate-level netlist) or hard cores (in layout format). We
assume that the untrusted vendors may insert the hardware Trojans
described in this paper into their IP products.

We assume that the IP consumers have access to the Trojan
free design specifications of the delivered IP products. They can
perform functional verification to check the IP cores against their
specifications and run different hardware Trojan detection methods
to identify possible malicious design modifications. We assume that
the IP products (in case of soft cores) may be re-synthesized to target
a specific technology library or device. In case of hardware cores, the
Trojan design will directly go through implementation.

We assume that the attacker has knowledge about the implemen-
tation details of IP products, including the Trojan inserted. He can
manipulate the inputs (including the clock signal) to the IP cores and
probe their outputs. We also assume that the attacker’s primary goal
is to retrieve secret information such as the cryptographic key instead
of simply causing deny-of-service.

Our threat model is similar to those established in previous
work [14], [15], [17]. We do not rely on unspecified functionality
and further exploit the potential security threat triggered by internal
don’t care conditions resulting from signal correlation.

IV. HARDWARE TROJANS BASED ON INTERNAL DON’T CARE

CONDITIONS

In this section, we provide details about the design and implemen-
tation of the proposed hardware Trojan. Our Trojan utilizes internal
don’t care as the trigger. This allows us to create a Trojan such
that the design with Trojan is functionally equivalent to its Trojan
free correspondence. That is, our Trojan is undetectable using formal
equivalence checking. If carefully deployed, the synthesis tools will
not identify our Trojan design as redundancy primarily due to the
NP-completeness of exact logic minimization. In order to activate the
Trojan, we need to use fault attack to satisfy the don’t care condition.
This will allow the trigger to function maliciously in order to leak
secret information.

A. Don’t Care Conditions

A don’t care condition is a particular function input under which
the output does not matter. They provide flexibility for the optimiza-
tion of Boolean functions [19]. The possible sources of don’t cares
include external don’t cares (EDCs), satisfiability don’t cares (SDCs),
and observability don’t cares (ODCs).

EDCs typically originate from incomplete specification of Boolean
functions, e.g., values assigned to ‘X’ for logic optimization. As
an example, the RSA cipher requires the key to be always an
odd number. Thus, an even key value (i.e., logical 0 for the least
significant key bit) can introduce an EDC condition. The output of the
function under an EDC condition, when unspecified, can be leveraged
for hardware Trojans, e.g., multiplexing the key to the ciphertext
when the lowest key bit is logical 0.

SDCs represent a never reached input condition for an internal
node, e.g., two inputs to the node can never be logical 1 at the same
time; ODCs represent input conditions under which the output of an
internal node can be either logical 0 or 1. In other words, under
an ODC condition, the output of an internal node does not have
an influence on any primary output. Unlike EDC, SDC and ODC
are caused by signal correlations resulting from reconvergent fanout.
Figure 1 shows some simple examples of SDC and ODC.

In Fig. 1, gate g7 has an SDC condition. The combination 11 will
never be observed at the inputs of this OR gate. Gates g4 and g5 have
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Fig. 1. Examples of SDC and ODC.

ODC conditions. Specifically, when n2 and n3 are both logical 0,
the output from g4 will dominate the primary output O. The output
from g5 does not have an effect on the output. Thus, 00 is an ODC
condition for g5. Similarly, 11 is an ODC condition for g4.

The SDC and ODC signal pairs discussed above are typically
connected to the same gate. We can further extend the don’t care
concept to signal pairs with a correlation but are topologically apart.
As an example, consider signals A and n6 in Fig. 1. Whenever A is
logical 1, n6 will be dominated to logical 0. Thus, it is impossible for
them to be logical 1 simultaneously. This demonstrates a generalized
don’t care condition for our hardware Trojan.

Previous work has demonstrated the feasibility of employing
EDC for hardware Trojan design [15]–[17]. However, EDCs can be
fully eliminated if a Boolean function is completely specified. By
comparison, the internal don’t cares (SDC and ODC) are caused by
signal correlation resulting from reconvergent fanout and thus widely
exist even in completely specified Boolean functions. In the following
subsection, we propose a new type of hardware Trojan that exploits
internal don’t care conditions.

B. Hardware Trojan Design and Implementation

The key idea behind our hardware Trojan is that don’t care
conditions provide the flexibility to pick the output value for certain
internal nodes. With such flexibility, we can replace the normal output
at those nodes with a desirable value (e.g., a key bit) under the don’t
care condition. Figure 2 shows two examples of such Trojans.
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Fig. 2. Hardware Trojans based on internal don’t cares. (a) A hardware Trojan
based on SDC. (b) A hardware Trojan based on ODC.

In Fig. 2 (a), the Trojan design uses the SDC condition for gate
g7 in Fig. 1 to multiplex between the normal output O and some
function f . Equation (1) shows the Boolean function for the Trojan.

O tj = n5 · n6 · f + n5 · n6 ·O (1)

Since the condition n5 = n6 = 1 will never be reached under
normal operation, n5 · n6 will always be 0, and Equation (1) will
reduce to O tj = O. Therefore, the Trojan will not be detected using
formal equivalence checking. And, if we carefully craft the Trojan,
the synthesis tools will keep this Trojan. Then, it is possible to create
a communication channel to leak information about f through fault
attack as we will show in Section V-B. Additionally, the redundancy
introduced by f can be used to downgrade system performance, e.g.,
increasing power consumption.

Similarly, in Fig. 2 (b), the Trojan design uses the ODC condition
for gate g5 in Fig. 1 to select between the normal output n5 and
function g. The difference is that the input combination n2 = n3 =
0 can occur, but the output n5 does not have an effect on the
primary output in this case. Thus, formal equivalence checking will
still indicate that the modified circuit is equivalent to its Trojan free
correspondence. However, there can be additional switching activities
from n5 tj all the way through some dominating node when g 6= n5,
which can be used to leak information about function g or increase
power consumption.

It is important to point out why we use two multiplexers to
construct the Trojan. As an example, the Trojan shown in Fig. 2 (a)
can be described using Equation (1), which yields a single multiplexer
for implementation. However, the select line of the multiplexer, i.e.,
n5 ·n6 will be constantly logical 0 due to a never reached don’t care
condition. This allows hardware Trojan detection methods based on
switching probability analysis to easily identify the select line as
a malicious signal. By introducing an additional multiplexer, each
signal in the Trojan design has a high ability to switch, which will
protect the Trojan from being detected.

When the Trojans are synthesized for implementation, they can re-
sult in different netlists as shown in Fig. 3 depending on the hardware
design tool used. The resulting netlists for an ASIC toolchain (e.g,
Synopsys Design Compiler) are shown in Fig. 3 (a) and (b). The tool
will typically reduce the addition multiplexer and add a NOR (for the
11 don’t care condition) or NAND (for the 00 don’t care condition)
gate to produce the select signal of the remaining multiplexer. As
mentioned, such optimization will increase the detectability of the
Trojan since the select signal may stay constant (for Trojans using
SDC conditions).
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Fig. 3. Hardware Trojans implemented by different tools. (a) A Trojan based
on 11 don’t care condition implemented by ASIC tool. (b) A Trojan based
on 00 don’t care condition implemented by ASIC tool. (c) Trojans based on
don’t cares implemented by FPGA tool.

When the Trojans are implemented using FPGA tools (e.g., Xilinx
Vivado), they are synthesized into a look up table (e.g., a LUT-4)
whose truth tables are shown in Fig. 3 (c). For a Trojan that uses
a 11 don’t care condition, the entries marked as italic green (where
X tj = f ) will never be accessed while for a Trojan that uses a 00
don’t care condition, the entries in italic red (where Y tj = f ) will
never be accessed. This reduces the Boolean functions to X tj = I
and Y tj = I respectively. In both cases, the inputs and output of



the LUT still have a high switching probability, which will protect
the Trojan from being detected.

Our Trojan design relies upon the inexactness of the logic syn-
thesis process, which involves many NP-hard problems. As a result,
synthesis tools often do not identify the Trojan design as redundant
logic. However, there is still possibility that the Trojan design will
be synthesized away using certain types of optimization with a high
effort as we will shown in Section V-A. Synthesis attributes (e.g., the
keep attribute) provides a possible technique to protect the Trojans
from such undesirable optimizations. However, explicit specification
of these attributes may expose the Trojan design. As an alternative
approach, we can add two flip-flops for the select lines of the
multiplexers to isolate the Trojan into a different combinational block
other than the one where the don’t care condition originates. Since
most logic synthesis optimizations target local combinational regions,
they will not be able to identify the correlation between the registered
select lines. Formal equivalence checking has shown that the design
with Trojan is still logically equivalent to the Trojan free baseline
after adding two registers for the don’t care signals.

When deployed, the Trojans are always on but will not cause any
observable side effect before external attack. For ODC Trojans, the
don’t care conditions can be satisfied frequently. However, it is not
possible for them to cause an observable change in any outputs. For
SDC Trojans, the don’t care conditions are theoretically never met.
However, it is still possible to force these conditions to appear using
fault attack. In the following subsection, we present our attack model
for SDC Trojans.

C. Attack Model

Our attack model leverages the difference in path delay of the don’t
care signals to launch a fault attack. We add two registers for the
don’t care signals. Under normal operation, the registered don’t care
signals cannot reach the don’t care condition to trigger the Trojan.
However, since there is a delay difference in the paths to the don’t
care registers, there is a possibility that one register fails timing while
the other does not. In this case, the register that fails timing can output
a faulty value to allow the don’t care condition to satisfy, which will
trigger the Trojan.

Before launching a fault attack, we first run the design with Trojan
under a normal operating clock frequency to initialize the design. This
will allow the secret information (e.g., the cryptographic key) that is
going to be leaked to load and stabilize. Such secret information
typically will not be frequently updated. Thus, the secret data input
to the Trojan will stay constant during the attack while the other input
can switch. In this way, there will be a significantly higher probability
to observe the constant secret value once the Trojan is activated.

We then gradually increase the clock frequency to cause faults.
Before either of the don’t-care registers has a timing violation, the
faults should be caused by other critical path timing failures. Such
faults tend to be random and thus do not reveal useful information.
When only one of the registers fails timing, there will be a high
probability to satisfy the don’t care condition. In this case, the fault
pattern will be more deterministic and thus can leak a significant
amount of secret information. After further increasing the clock
frequency, both don’t-care registers will fail timing and the fault
pattern will become random again. We use a concrete example to
demonstrate our attack in Section V-B.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results. We insert Trojans
into IWLS benchmarks [20] and show that they may survive after

synthesis optimizations in Section V-A. We present fault attack
analysis in Sections V-B to activate the Trojan in order to leak secret
information. In Section V-C, we perform detectability analysis and
provide possible defense techniques.

A. Trojan Design and Synthesis

We use several combinational benchmarks from IWLS.org [20] for
Trojan insertion. We use pure combinational benchmarks because it
is easier to perform an automated complete equivalence checking
between the designs without and with Trojan using SAT tools [21],
[22]. Figure 4 shows our hardware Trojan design and test flow.
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Fig. 4. Hardware Trojan design and test flow.

In our test, we first use Synopsys Design Compiler to synthesize
the benchmarks. We use SAT tools [21], [22] to calculate the SDC
and ODC conditions for each gate in the synthesized netlist and then
use these don’t cares to insert single bit version Trojans as shown in
Fig. 2. We add an additional input to leak through the Trojan to a
randomly selected primary output. In this way, we can use a SAT tool
to automatically check if the Trojan remains after logic optimization.
In an initial equivalence checking step, we have formally verified that
all designs with Trojan are logically equivalent to the corresponding
Trojan free benchmarks. This indicates that equivalence checking
cannot detect our don’t-care Trojan. The Trojan designs are then
synthesized using ABC [21] with different optimizations to see if
the inserted Trojan will stay after logic synthesis.

Table I summarizes the test results, where columns one and two
show the benchmarks tested and the total number of gates in the syn-
thesized design netlist; columns three and eleven report the number of
SDC and ODC Trojans inserted respectively; the remaining columns
indicate the number of Trojans stayed after logic optimizations using
different synthesis commands and scripts in ABC [21]. Here, resyn2,
resyn2rs and drwsat2 are suggested logic synthesis scripts provided
by ABC. They perform similar optimizations (i.e., combinations of
technology-independent AIG rewriting, refactoring and restructuring)
with increasing effort levels. The dch command computes alternative
structural choices using SAT based simulation; dch* runs the dch
command with the -r option to skip choices with redundancy. mfs2*
adds the -D 0 -M 0 options to invoke the mfs2 command, which
performs don’t-care-based optimization. With additional command
options, dch* and mfs2* both run at higher optimization efforts than
dch and mfs respectively. We choose the dch and mfs commands since
they both support redundancy removal. We refer interested readers to
the documentation of ABC for more detailed information about the
specific optimizations performed by these commands and scripts [21].

From Table I, internal don’t care conditions widely exist. This
provides the flexibility to search for don’t cares for Trojan insertion.
Take C3540 as an example, there are 2476 gates in the design netlist.
Among them, 588 gates have SDC conditions while 144 gates have
ODC conditions for Trojan design. We can see the Trojans could
possibly stay after logic synthesis, especially for larger benchmarks.



TABLE I
STATISTICS OF BENCHMARKS AND HARDWARE TROJAN DESIGNS.

Bench. Gates SDC Trojans ODC Trojans
Ins. resyn2 resyn2rs drwsat2 dch dch* mfs2 mfs2* Ins. resyn2 resyn2rs drwsat2 dch dch* mfs2 mfs2*

C1355 507 104 0 0 0 0 0 104 0 212 2 2 2 212 2 66 0
C1908 446 84 15 5 0 0 0 84 0 152 0 0 10 152 4 54 0
C2670 642 122 54 0 2 0 0 4 0 153 11 15 13 132 6 21 5
C3540 2476 588 359 171 22 1 0 479 0 144 91 85 69 144 63 99 19
C5315 3686 784 330 151 3 0 0 434 0 360 115 98 112 359 91 162 37
C6288 12625 1947 915 394 73 9 0 1910 0 1006 857 832 848 1006 792 957 372
C7552 3640 566 102 31 564 566 565 310 0 788 251 220 787 788 788 313 103

des 4671 1446 648 131 0 0 0 349 0 339 114 107 110 339 107 84 22
frg2 629 107 67 2 0 0 0 0 0 18 8 8 9 18 8 5 0
i10 3117 537 537 537 8 536 536 389 0 269 269 269 95 269 269 111 27
pair 2168 225 26 3 0 0 0 58 0 190 64 60 63 190 63 41 36

By comparing the results for resyn2, resyn2rs and drwsat2 (similarly,
dch vs. dch* and mfs2 vs. mfs2*), higher optimization effort tends to
eliminate more Trojans. The mfs2* command will optimize away all
SDC Trojans with the additional command options. However, ODC
Trojans can still remain. The dch* and mfs* commands can synthesize
away more Trojans than other scripts. This is because these two
commands support redundancy removal and don’t care optimization.

Table I reinforces that our Trojan designs can reside after logic
synthesis. However, there are still optimization techniques that can
better eliminate the Trojans, e.g., dch and mfs2. We further synthesize
the Trojan designs listed in Table I using several synthesis tools
with different optimizations. Test results show that Trojans inserted
in relatively smaller benchmarks such as C1908, C2670 and frg2
are more likely to be optimized away. ASIC synthesis flows tend to
keep the Trojan because the benchmarks are pre-synthesized using
Design Compiler before Trojan insertion. FPGA synthesis flows
tend to remove the Trojan when the design hierarchy is flattened.
Table II indicates if one of the Trojan designs inserted in the
C6288 benchmark will remain after logic optimization using different
synthesis tools.

TABLE II
THE EFFECT OF LOGIC OPTIMIZATION ON OUR HARDWARE TROJAN

UNDER DIFFERENT SYNTHESIS TOOLS AND OPTIONS.

Synth Tool Command Option Stays?

ABC

resyn2rs – 3
drwsat2 – 3

dch -r 7
mfs2 -D 0 -M 0 7

yosys
proc; opt – 3

synth xilinx – 3
synth xilinx flatten 7

Quartus
normal flow balanced 3
high effort performance 3
Aggressive area 3

Vivado/ISE default flow hierarchy 3
none hierarchy 7

Design Compiler compile – 3
compile ultra flatten 3

In our test, we restricted the search for don’t care conditions within
signal pairs connected to the same gate. The number of don’t cares
can be far more than that if we extend our search to any signal
pairs with a correlation, i.e., generalized don’t cares as introduced
in Section IV-A. Thus, it requires tremendous efforts to enumerate
all possible don’t care conditions for completely eliminating such
hardware Trojans.

In real design practice, we need to choose SDCs closer to the pri-
mary outputs while ODCs closer to the primary inputs for hardware

Trojan design. The increase in the number of logic levels will make it
harder for logic synthesis tools to identify and eliminate the Trojans
as redundancy. Further, we can use general conflict conditions for
hardware Trojan design. The difference in logic levels will protect
such generalized don’t cares from been identified and introduce a
larger difference in path delay that can be leveraged by our fault
attack method described in the following subsection.

B. Fault Attack Analysis

In this subsection, we show that the hardware Trojan can open up
a door for fault attack to extract secret information, using the attack
method described in Section IV-C.

We use a 128-bit pipelined AES core from opencores.org for fault
attack analysis. We set one select signal for the Trojan to be an
input to the SBox of the final round and use a SAT solver [22]
to search internal nodes of the SBox for the second select line so
that the two have a conflict condition (e.g., they cannot be logical 1
simultaneously and thus represent a generalized don’t care condition).
We add two flip-flops for the select lines and then use the registered
signals to multiplex the key to the Cipher output. Figure 5 shows the
AES Trojan design used in our attack.
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Fig. 5. AES design with an SDC Trojan implemented on FPGA.

We constrain the system clock frequency to 100 MHz and imple-
ment the AES Trojan design on SASEBO-W board with a Xilinx
XC6S150T FPGA. We first run the design under 100 MHz using
random plaintexts generated by a 128-bit LFSR (Linear Feedback
Shift Register). Test results show that the AES design produces
correct ciphertexts. In other words, the Trojan is not activated under
normal operation. Another reason for running the core under a normal
clock frequency prior to fault attack is that this will allow the secret
key to successfully load and stabilize before the attack.

To launch a fault attack, we over-clock the design by gradually
increasing the input clock frequency to the FPGA. Using the same
random inputs, we start to observe faulty ciphertexts. However, the
faults could be caused by a failed critical path in the original AES
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Fig. 6. Distribution of a ciphertext byte under different clock frequencies.

design at first because it is usually desirable to keep the Trojan
off the critical path to escape from Trojan detection methods based
on delay analysis. Extracting information about the secret key from
such faults can be a challenging task due to the confusion and
diffusion introduced by the AES algorithm. In addition, such faults
can be dependent on the random plaintext and thus unpredictable. By
comparison, if the fault is caused by the hardware Trojan (i.e., when
either of the don’t care signal register violates timing), the secret key
can be multiplexed to the faulty ciphertext directly. Since the key is
a stabilized constant value, a more deterministic fault pattern would
happen (i.e., a significantly higher probability to observe certain
values than others). Our observation has confirmed that increasing the
system clock frequency will cause the distribution of the ciphertext
bytes to change from close to even to significantly biased.

Figure 6 shows the distribution (occurrence probability) of a
ciphertext byte under random inputs and different clock frequencies.
We can see that at 100 MHz, the probability of observing each
possible value (0 ∼ 255) is close to 0.0039, i.e., 1/256 – the orange
dashed lines in the plots. When increasing the clock frequency to
160 MHz and 200 MHz, there will be higher peaks caused by
failed critical paths. At 220 MHz and 240 MHz, there will be a
significantly higher peak, which corresponds to the correct key byte
value. At this moment, one of the don’t care registers should have
failed timing and the Trojan is multiplexing the constant key value
to the ciphertext. When further increasing the clock frequency to 260
MHz, the distribution moves towards even again, indicating that both
don’t care signal registers have a timing violation, which makes the
fault pattern less predictable.

We then perform fault attack to recover the key, which is set
to 0x0A8B1457 695355FB 8AC404E7 A79E0694 in our test. We
first run the design under 100 MHz and then increase the system
clock to 232 MHz to observe significantly biased distributions for
all ciphertext bytes. Figure 7 shows the probability of observing
different values for each ciphertext byte. We can see that the correct
key values exactly correspond to the highest peaks for each curve
in the figure. As demonstrated by the attack, we can simply over-
clock the design to force the don’t-care signals into a normally never
reachable condition in order to activate the Trojan. We can precisely
decode the key by calculating the distribution of the samples.

We further change the secret key and perform some additional
attacks. Test results show that our attack method is independent of
key values but more sensitive to input clock frequency changes.

C. Detectability Analysis

Hardware Trojan detection methods mainly fall into three different
categories: functional and security verification [23], switching prob-

ability analysis [13], and side channel analysis [24].
Functional verification will not detect our Trojan since it hides

behind internal don’t care conditions. Such conditions are typically
out of the reach of functional verification tools. Thus, functional
verification tools will show that the design with Trojan is equiv-
alent to its Trojan free specification. An important reason why our
hardware Trojan is hard to detect is that hardware designs are usually
described using functional languages (e.g., Verilog and VHDL) and
models (e.g., Boolean function and Boolean gates). They do not
carry the information required for modeling and reasoning about
security properties. Thus, type enforced hardware design languages
and tools [25], [26] provide a possible solution for detecting our
hardware Trojans. These methods encode security attributes into the
design for formal verification of hardware security properties. A
promising technique is hardware information flow tracking [27], [28],
which can precisely account for the flow of sensitive information even
through unreachable states.

Switching probability analysis will fail to detect our Trojan as well
since we use a don’t care signal pair as the trigger. Consequently,
every wire in our Trojan design has a high probability to switch.
Using state-of-the-art switching probability analysis technique [13],
the Boolean function re-constructed from partial simulation will
be equivalent to the design under test, considering that the Trojan
inserted and Trojan free designs are logically equivalent. Thus, it
cannot detect our Trojan. However, if our Trojan is optimized and
reduced to a single multiplexer, switching probability analysis will
be effect in identifying it.

Side channel analysis cannot capture our Trojan due to several
reasons. There is no golden reference design to compare the side
channel statistics. The Trojans are always on but will not cause
any observable side effect before external attack, which leads to no
significant dynamics in the side channel measurements. In addition,
our lightweight Trojan only uses two multiplexers as both the Trojan
trigger and payload. This results in a significantly smaller fingerprint
as compared to those complex Trojan designs. However, circuit
frequency sweeping techniques [29], which gradually increases the
circuit clock frequency to generate a number of delay signatures
of the hardware design in order to analyze if the design contains
a Trojan, take a similar approach to our fault attack. Thus, they can
be used to activate our Trojan for further detection.

Although our hardware Trojan can be difficult to detect, there
are still possible defense techniques. Logic synthesis analysis results
show that our Trojan may be optimized away when using higher
optimization effort. Further, logic synthesis techniques that enable
redundancy removal or don’t care based optimization (e.g., SAT based
don’t care search) can more efficiently eliminate our Trojans. In
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Fig. 7. Key guess results using fault attack.

addition, techniques such as security verification, switching proba-
bility analysis and circuit frequency sweeping all provide possible
countermeasures to mitigate the new security threat.

VI. CONCLUSIONS

We demonstrate the possibility of exploiting internal don’t care
conditions for inserting a new type of hard-to-detect hardware Trojan.
We show that such hardware Trojans may survive from logic opti-
mizations under a number of synthesis tools using different options.
When deployed, such hardware Trojan can open up a door for fault
attacks to leak secret information or downgrade system performance
by increasing power consumption. We present detectability analysis,
suggest synthesis optimizations and discuss possible defense tech-
niques to mitigate such a security threat.
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